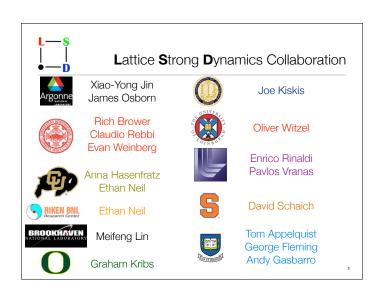
Is the Higgs a Composite Scalar?

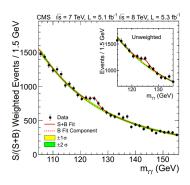
Evan Weinberg

Boston University, Boston, MA weinbe2@bu.edu

March 19, 2016



RBRC Workshop on Lattice Gauge Theories 2016


9-11 March 2016 Brookhaven National Laboratory, Physics Department

Based on work in arXiv:1601.04027

LSD Collaboration

The Higgs Boson

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) Combined **CMS** m_H = 125 GeV $H \rightarrow \gamma \gamma$ (untagged) $p_{SM} = 0.84$ $H \rightarrow \gamma \gamma$ (VBF tag) $H \rightarrow \gamma \gamma$ (VH tag) $H \rightarrow \gamma \gamma$ (ttH tag) $H \rightarrow ZZ$ (0/1-jet) $H \rightarrow ZZ$ (2-jet) H → WW (0/1-iet) H → WW (VBF tag) H → WW (VH tag) H → WW (ttH tag) $H \rightarrow \tau\tau$ (0/1-jet) $H \rightarrow \tau\tau$ (VBF tag) $H \rightarrow \tau\tau$ (VH tag) $H \rightarrow \tau\tau$ (ttH tag) $H \rightarrow bb (VH tag)$ H → bb (ttH tag Best fit σ/σ_{sм}

Figure: [Phys. Lett. B 716 (2012)]

Figure: [Eur.Phys.J. C75 (2015)]

- The Higgs Boson looks very Standard Model.
- There's still the need for a UV completion.

A Composite UV Completion

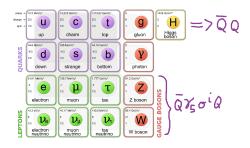


Figure: Modified from Wikipedia: "Standard Model"

• Higgs: $\bar{Q}Q$ scalar composite of strong dynamics.

Possibly Composite Teases from the LHC

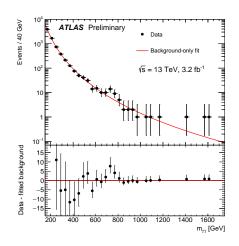


Figure: ATLAS Diphoton @ 13 TeV

[ATLAS-CONF-2015-081]

- 750 GeV diphoton bump: η' -like state from a new composite sector?
- 2 TeV diboson bump: ρ-like state, not fully excluded, especially if state is *broad*.

Not QCD!

The new sector can't just be scaled up QCD.

- QCD has...
 - a broad scalar close to the vector mass,
 - a large S-parameter, and
 - no walking regime.
- More flavors can produce different, interesting behavior.

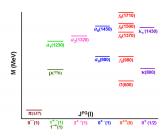


Figure: [Phys.Rev. D76 (2007)]

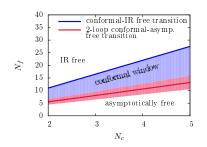
Composite Models

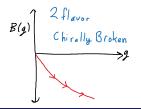
- It is not easy to build a viable composite model for EWSB.
- Broadly speaking, there are two steps:
- Pick a general model and study if it has certain features.
- Worry about connecting it to the Standard Model.

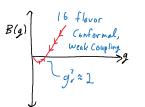
Composite Models

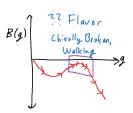
- It is not easy to build a viable composite model for EWSB.
- Broadly speaking, there are two steps:
- Pick a general model and study if it has certain features. ← This talk
- Worry about connecting it to the Standard Model.

Multi-flavor QCD

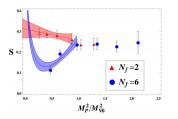

• The interest in multi-flavor QCD is motivated by the beta function.

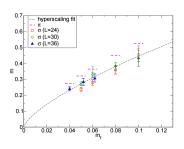

$$\beta(g) = -\beta_0 g^3 - \beta_1 g^5 + \mathcal{O}(g^7)$$


$$\beta_0 = \left[\frac{11}{3} N_c - \frac{2}{3} N_f\right] / (4\pi)^2$$


$$\beta_1 = \left[\frac{34}{3} N_c^2 - \left(\frac{13}{3} N_c - \frac{1}{N_c}\right) N_f\right] / (4\pi)^4$$

$$\beta_1 = 0 \to N_f \approx 8.05$$




The lattice and many-fermion physics

- We can use the lattice as a probe of new non-perturbative physics.
- The lattice has indicated S parameter suppression with more flavors.

[Schaich, LATTICE 2011, arXiv:1111.4993]

It has also indicated that SU(3)
 12 flavor is conformal.

[Aoki et al., LATTICE 2014, arXiv:1501.06660]

• And, in the mass-deformed theory, has a light scalar.

Our model

- Pick a general model and study if it has certain features.
 - Lattice study of SU(3) with 8 fundamental flavors
 - Chiral Kogut-Susskind "Staggered" fermions: multiples of 4 flavors.
 - Right near 2-loop (strongly coupled...) opening of conformal window.
 - Likely confining, but possibly conformal. We cannot definitively tell.
 - "Feature, not a bug."
- Worry about connecting it to the Standard Model.

Aside: Partner 4+8 Project

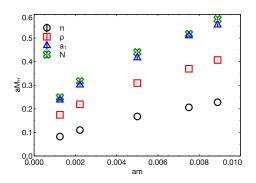
- We have a parter project with 4 chiral, 8 massive flavors.
 - Brower et al., "A composite Higgs model at a conformal fixed point"
 - Available at arXiv:1512.02576.
- Begin to address the question: "What happens when we decouple some fermions in a (near-)conformal theory?"
 - Important for non-minimal (>3 pNGB) composite models.

Lattice Details

- SU(3) gauge group, 8 continuum fermions
- \bullet Gauge action: fundamental-adjoint with $\beta_a=-\beta/4$ [Cheng et al. 2013][Cheng et al. 2014]
 - Negative adjoint term helps avoid lattice fixed point
- Fermion action: 1-nHYP smeared staggered [Hasenfratz et al. 2007]
 - nHYP smearing helps push to stronger coupling (avoid lattice phase)
- Software: HMC and most measurements in FUEL [J. Osborn]
- Runs:
 - "Fixed" $M_{\pi}L$:
 - 24^3 , m = 0.00889; 32^3 , m = 0.005; 48^3 , m = 0.00222; 64^3 , m = 0.00125
 - Finite volume:
 - 24^3 and 32^3 , m = 0.0075
 - Large mass (connect to LatKMI):
 - 24^3 , m = 0.035

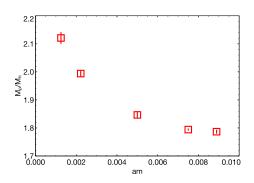
Quark-Line Connected Spectrum

- Interested in ground state in many isomultiplet channels
- Using QCD language:


•
$$\pi$$
 (0⁻⁺) — W^{\pm} , Z

• ρ (1⁻⁻) — di-boson resonance?

a₀ (0⁺⁺) — detector signal?
 a₁ (1⁺⁺) — detector signal?


- N $(\frac{1}{2}^+)$ dark matter?
- Use wall sources to project onto ground states [Gupta et al. 1991]
- Also interested in decay constants (93 MeV convention)
 - ullet F_{π} electroweak symmetry vev pprox 250 GeV
 - F_{ρ} , F_{a_1} production cross-sections, chiral restoration?
 - Use current-current correlators to avoid renormalization

Non-singlet spectrum

- Unlike QCD: shouldn't trust ChiPT here.
- Spectrum depends heavily on the fermion mass.
 - \bullet Curvature at small m_q

Chirally broken?

- Looks chirally broken, or conformal with scaling corrections?
 - Boulder 12 flavor results on conformal scaling corrections: [Cheng et al. 2014]
- Interesting dynamics: $M_{
 ho} > 2 M_{\pi}$

0⁺⁺ scalar correlation function

Isosinglet Scalar (0^{++})

$$S(t) = \langle \bar{\psi}_a \psi_a(0) \; \bar{\psi}_a \psi_a(t) \rangle$$

$$\begin{split} &=\frac{1}{\mathcal{Z}}\int[dUd\bar{\psi}d\psi]\left\{2\overline{\psi}(0)\overline{\psi}(0)\overline{\psi}(t)\psi(t)-\overline{\psi}(0)\underline{\psi}(t)\overline{\psi}(t)\psi(t)\right\}\ e^{-\frac{1}{g^2}F^2-\bar{\psi}_i\mathcal{D}\psi_i-m_q\bar{\psi}_i\psi_i}\\ &=\frac{1}{\mathcal{Z}}\int[dU]\ \left\{2G_F(0,0)G_F(t,t)-(G_F(0,t)\gamma_5)^2\right\}\ \det(D^\dagger D+m_q^2)^{N/2}\ e^{-\frac{1}{g^2}F^2}\\ &\equiv 2D(t)-C(t) \end{split}$$

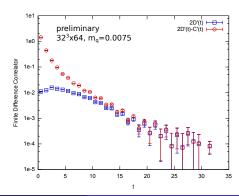
• Factor $G_F(t, t)$ means we need *every* point to itself.

Strategy for disconnected diagrams

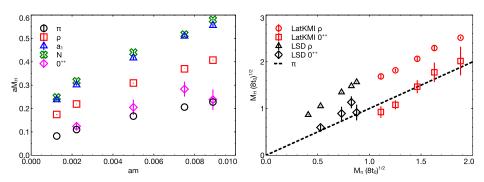
- \bullet Fitting the isosinglet, 0^{++} meson requires disconnected diagrams.
- ullet 6 U(1) sources with dilution in time, color, and even/odd spatially
- Improved estimator for $\langle \bar{\psi}\psi \rangle$
- Still need large statistics to suppress gauge noise

What this gets us:

$$\begin{split} C(t) &= -A_{a_0} e^{-M_{a_0}t} - (-1)^t \left(A_{\pi_{sc}} e^{-M_{\pi_{sc}}t} \right) + \cdots \\ S(t) &\equiv 2D(t) - C(t) = A_{\sigma} e^{-M_{\sigma}t} + (-1)^t \left(A_{\eta} e^{-M_{\eta}t} \right) + \cdots \\ &\downarrow \quad \text{[Aoki et al., LATTICE 2014, arXiv:1501.06660]} \\ 2D(t) &= A_{\sigma} e^{-M_{\sigma}t} - A_{a_0} e^{-M_{a_0}t} + (-1)^t \left(A_{\eta} e^{-M_{\eta}t} - A_{\pi_{sc}} e^{-M_{\pi_{sc}}t} \right) + \cdots \end{split}$$

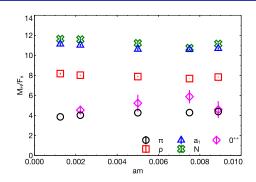

Strategy for disconnected diagrams, continued

$$S(t) \equiv 2D(t) - C(t) = A_{\sigma}e^{-M_{\sigma}t} + (-1)^{t} \left(A_{\eta}e^{-M_{\eta}t}\right) + \cdots$$


$$2D(t) = A_{\sigma}e^{-M_{\sigma}t} - A_{a_{0}}e^{-M_{a_{0}}t} + (-1)^{t} \left(A_{\eta}e^{-M_{\eta}t} - A_{\pi_{sc}}e^{-M_{\pi_{sc}}t}\right) + \cdots$$

If $M_{0^{++}} < M_{a_0}$, we can extract from both D(t), S(t) at large t.

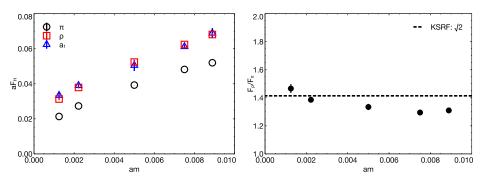
- Correlated fit to both parity states
- Vacuum subtraction introduces large uncertainties
- Fit the finite difference:
 - D(t+1) D(t)
 - S(t+1) S(t)
- Average resulting M₀₊₊, errors in quadrature



Singlet spectrum

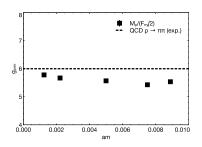
- Generally, the 0⁺⁺ tracks the Goldstone boson in this regime.
 - LatKMI results: [Y. Aoki et al. 2013] [Y. Aoki et al. SCGT15] (Thank you!)
- Very different from QCD!

Spectrum Overview



- Look at ratios with $F_{\pi} \approx v \approx 250 \, GeV$
- Light $0^{++} \approx \pi < \rho, 2\pi$
- $M_{0^{++}}/F_{\pi} \approx$ 4: What would a top loop do?

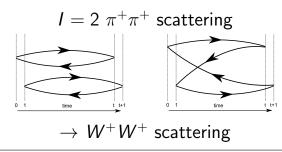
Rich spectrum of other states.

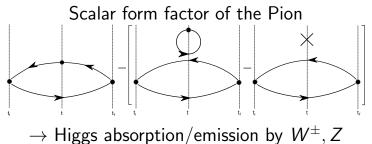

- $M_{\rho}/F_{\pi} \approx 8$: 2TeV di-boson resonance?
 - Ratio seen in QCD
 - Also seen in SU(3) 2 flavor sextet [LatHC 2015 (LATTICE2015)]
 - Perhaps a general feature?

Other Results: Decay Constants

- Decay constants extracted from current correlators: no "Z" factor.
- F_{π} is smallest; F_{ρ} , F_{a_1} degenerate w/in errors.
- Interesting: Check Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relations: $F_{\rho}M_{\rho}=2F_{\pi}^{2}g_{\rho\pi\pi}$; $M_{\rho}^{2}=2F_{\pi}^{2}g_{\rho\pi\pi}^{2}$.
 - Predicts $F_{\rho} = \sqrt{2}F_{\pi}$ —we (roughly) see that!

Vector Meson Phenomenology

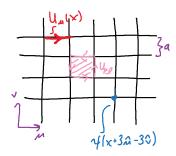



- Production rate related to F_{ρ} .
- ullet Decay via longitudinal coupling to Goldstones (W^\pm,Z) : $g_{
 ho\pi\pi}$
- Estimate $g_{\rho\pi\pi}$ via KSRF: $g_{\rho\pi\pi} = \frac{M_{\rho}}{\sqrt{2}F_{\pi}}$.
- Estimate $\Gamma_{
 ho}pprox rac{g_{
 ho\pi\pi}^2M_{
 ho}}{48\pi}pprox rac{M_{
 ho}^3}{96\pi F_{\pi}^2}$ (Assuming $M_{
 ho}\gg M_{\pi}$)
 - Using $M_{
 ho} pprox 2\, TeV, F_{\pi} pprox 250\, GeV
 ightarrow \Gamma_{
 ho} pprox 450\, GeV.$

8 flavors going forward

- Pick a general model and study if it has certain features.
 - 8 flavors is a great model to learn about light scalar dynamics.
 - What is the low energy theory when there's a light scalar?
 - We're on the UV complete lattice.
 - We can compute pi-pi scattering, pi-sigma scattering, sigma-sigma scattering.
 - From a field theory standpoint, we can learn a lot.
- Worry about connecting it to the Standard Model.

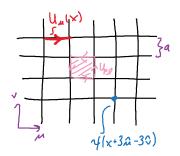
Upcoming work


8 flavors going forward

- Pick a general model and study if it has certain features.
 - 8 flavors is a great model to learn about light scalar dynamics.
 - What is the low energy theory when there's a light scalar?
 - We're on the UV complete lattice.
 - We can compute pi-pi scattering, pi-sigma scattering, sigma-sigma scattering.
 - From a field theory standpoint, we can learn a lot.
- Worry about connecting it to the Standard Model.

Thank you!

Backup


Backup: The Lattice

- Studies are done on 4-dimensional L × L × L × (2L) lattices.
- Common values are $L=24,32 \rightarrow \mathcal{O}(1 \text{ million})$ sites.

$$\mathcal{Z} = \int [dUd\bar{\psi}d\psi]e^{-\frac{1}{g^2}F^2 - \bar{\psi}_i \not\!\!D \psi_i - m_\ell \bar{\psi}_\ell \psi_\ell - m_h \bar{\psi}_h \psi_h}$$

Backup: The Lattice

- Studies are done on 4-dimensional $L \times L \times L \times (2L)$ lattices.
- Common values are $L=24,32 \rightarrow \mathcal{O}(1 \text{ million})$ sites.

$$\mathcal{Z} = \int [dU] \, \det(D^{\dagger}D + m_h^2)^{N_h/2} \, \det(D^{\dagger}D + m_\ell^2)^{N_\ell/2} \, \, e^{-rac{1}{g^2}F^2}$$

Having multiple flavors is just adding more fermion determinants.

Backup: 8 flavors finite temperature studies

• We base our 8 flavor runs on existing results.

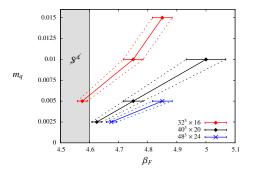


Figure: Finite T studies by Boulder / LSD, in preparation

Run at strong couplings safe from deconfinement and lattice phases.

Backup: Lattice simulation details

- Lattice study of SU(3) with 8 fundamental flavors
 - Gauge action: fundamental-adjoint with $\beta_a = -\beta/4$ [Cheng et al. 2013][Cheng et al. 2014]
 - Fermion action: nHYP smeared staggered [Hasenfratz et al. 2007]
 - Software: HMC and most measurements in FUEL [J. Osborn]

Backup: Setting and varying a scale

Along the gradient flow...

[arXiv:1006.4518]

$$t =$$
gradient flow time

…look at a quantity…

$$g_{WF}^2\left(\mu = \frac{1}{\sqrt{8t}}\right) = \frac{1}{\mathcal{N}}\left\langle t^2 E(t) \right\rangle \stackrel{\text{\tiny 0.8}}{\sim} _{\text{\tiny 0.6}}^{\text{\tiny 0.8}}$$

...relative to a consistent IR scale.

$$g_{WF}^2(\mu_0 = \frac{1}{\sqrt{8t_0}}) = \frac{0.3}{\mathcal{N}}$$

- μ_0 is an energy scale.
- $\sqrt{8t_0}$ is a length scale.

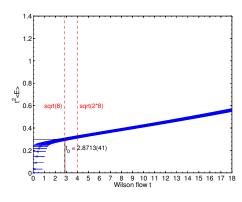


Figure: $48^3 \times 96$, $m_q = 0.00222$

Backup: Scalars in QCD

- There are five (maybe 6) isosinglet scalars below the charm threshold.
- $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ (and maybe $f_0(1790)$).
- Quark model: only two can be predominantly $\bar{Q}Q$.
- Others: meson molecule, diquark pair, glueballs?

Backup: KSRF Relations

$$F_{\rho}M_{\rho} = 2F_{\pi}^{2}g_{\rho\pi\pi}$$
 $M_{\rho}^{2} = 2F_{\pi}^{2}g_{\rho\pi\pi}^{2}$

These imply:

$$F_V = \sqrt{2}F_\pi$$
 $g_{
ho\pi\pi} = M_
ho/F_
ho$

These are good at $\approx 20\%$ in QCD, even at heavier pion masses. Need to add links to citations: use in QCD, how it comes from simple models of massive vectors.

Backup: Strategy for disconnected diagrams

- 8 flavors uses the following setup!
 - 6 U(1) sources with dilution in time, color, and even/odd spatially
 - Improved estimator for $\langle \bar{\psi}\psi \rangle$
 - Dilution in time, color, even/odd space
 - Improved estimator for disconnected piece
 - Still need large statistics to suppress gauge noise
- Analysis strategy.
 - Correlated fit to both parity states
 - Vacuum subtraction introduces large uncertainties
 - Fit an additional constant
 - Equivalent to fitting the finite difference C(t+1)-C(t)

$$C(t) = c_{0^{++}}\cosh\left(M_{0^{++}}\left(T/2-t\right)\right) + c_{\widetilde{\pi}_{sc}}\left(-1\right)^{t}\cosh\left(M_{\widetilde{\pi}_{sc}}\left(T/2-t\right)\right) + v$$